

Research of methods power control of wind turbines – page 236

cena 85 zł (w tym 8% VAT)

PRZEGLĄD ELEKTROTECHNICZNY Vol 2024, No 5

Contents

01	Serafin Bachman, Marek Turzyński, Marek Jasiński ¹ - Modern control strategy of bidirectional DAB	1				
~~	converter with consideration of control nonlinearity	•				
02	Mariusz ZDANOWSKI, Piotr GRZEJSZCZAK - Didactic workstations in the ISEP/ZEP WUT power electronics					
02	aboratory - development and implementation in the didactic process	12				
03	Pawei CZOPER, Jakub DERNAT - The Axisymmetric MRE Actuator in PIR control system Pabert SUBUS, Tomasz TABCZEWSKI, Einite Control Set Model Predictive Current Control for Polyetance	10				
04	Synchronous Motor Current Pipple Analysis	19				
05	Karol NA IDEK Radosław NALERA - Energy Management in a Proton Exchange Membrane Fuel Cell-based	25				
05	DC Microgrid Using Feedback Linearization Control and GWO	25				
06	Sehastian Baha Grzegorz Palesa Jarosław Wiśniewski Filin Mańka - Considerations on SiC MOSEET	31				
00	TSEP-based iunction temperature measurement routines in practical use	01				
07	Mateusz WASILEWSKI, Piotr FALKOWSKI - DC-AC converter with additional intermediary DC-DC converter	38				
08 Wiktor MALESZA1 - On feedback linearization of input constrained systems						
09	Bartioniei WICHER. Stefan BROCK - Tuning algorithm for ADRC speed control dedicated to two - mass	49				
	system					
10	Rafał Miśkiewicz, Przemysław Trochimiuk, Jacek Rabkowski - Maximizing the efficiency of the AC/DC	56				
	and DC/DC converters by changing the DC-link voltage					
11	Radosław NALEPA, Karol NAJDEK - Estimation of the boost converter inductance current in dynamic	63				
	conditions by means of NARX neural network					
12	Wojciech JURCZAK, Dawid STAWIARSKI, Kamil ZYGMUNT – Method of analyzing the current flow in the	68				
	capacitor bank of the intermediate DC circuit of the frequency converter					
13	Adam MUC, Andrzej KASPROWICZ, Piotr MYSIAK ³ - Passive concentrator for single-phase inverters with	76				
	three-phase output using magnetically coupled reactors					
14	Krzysztof NOWASZEWSKI, Krzysztof KULIKOWSKI, Andrzej SIKORSKI, Mateusz WASILEWSKI, Adam	82				
	KUZMA, Krzysztof DMITRUK, Hubert JAKUBOWSKI - Conducted emission at the input port of the ground					
	power supply unit for 28 V DC and 270 V DC aircrafts					
15	Adam MUC, Jan IWASZKIEWIC - Three-phase Cascade Inverter Controlled by Signals Calculated based on	86				
40	the Haar Wavelet	00				
16	Albert SAWINSKI, Plotr Chudzik, Karol latar - Synthesis and research of the quadrotor sliding mode control	92				
17	algorithms	00				
17	deleved inpute	99				
10	Karol WPÓREL Krzysztof SZARAT Bartlomioj WICHEP Stofan BPOCK - Hybrid sliding Luenberger	104				
10	observer for drive system with elastic connection					
19	Marek ZENKER - Influence of temperature on the dielectric response in the frequency domain of dry cellulose	108				
	and aramid paper impregnated with exploited and regenerated synthetic ester	100				
20	Juwita MOHD SULTAN, Nurul Najihah KAMARUZAMAN, Amir Rashid CHAUDHARY, Azdiana Md	112				
	YUSOP, Zahariah MANAP, Darmawaty MOHD ALI- Precision Indoor Positioning with Ultra-Wideband (UWB)					
	Technology					
21	Viktor DUBIK, Vitalii KAMISHLOV, Oleg TKACH, Oleg HORBOVY, Viktor MAZUR, Ihor KUPCHUK,	117				
	Hanna PANTSYREVA, Olha ALIEKSIEIEV - Analysis and calculation of the dynamic voltage reserve of the					
	converter when working under load in systems of subject regulation by electric drives of direct current					
22	Wong Kok LONG, Mohamad Fani SULAIMA, Mohamad Naím Mohd NASIR, Zulhasrizal BOHARI ¹ -	1248				
	Investigation of Load Variant Under Power Distribution Network Reconfiguration Using EPSO Algorithm					
23	Lucie SOUSEDIKOVA, Milan ADA - Electrodermal Activity in Polygraph Testing	129				
24	Soumia Benbakreti, Samir Benbakreti, Kadda Benyahia, Abdelkader Khobzaoui - Pretrained models for	135				
	classification of dementia degree and treatment of Alzheimer's disease					
25	Mariem BELKEDARI, El mostafa LITIM, Abdelkader BELAIDI, Abdelwaheb HENNI MANSOUR - Model	139				
~ ~	free sliding mode control for serial robot manipulator: rigid and elastic joint robot	445				
26	HIROYUKI KAGAMI, Atsushi TERADA, Katsushige NAKASHIMA - Verification of the effect of not springs on	145				
07	springs	4.4				
21	illes. Rezzay Dara, wala Rrika, Allilleu Nour El Islall Ayad, Benyekniet Larouci, Mouari. Boudjella, A.	14				
	ouuuane, o. merroubi - Suudy and measurement of magnetic emission generated by underground 400kV					
28	Volodymyr HRARKO Dmytro PROTSENKO Andrii RARTETSKVI Iryna GUNKO Ludmila SUVETS	153				
20	Katoryna CHMYKH Olona TRIIKHANSKA Vadym RYAROSHAPKA - System diagnostics of braking circuite	100				

Kateryna CHMYKH, Olena TRUKHANSKA, Vadym RYABOSHAPKA - System diagnostics of braking circuits of frequency-controlled asynchronous electric drives converters using FPGA

PRZEGLĄD ELEKTROTECHNICZNY Vol 2024, No 5

Contents

29	Bouchra Benabdelkrim, Touhami Ghaitaoui, Ali Benatiallah, Khaled Koussa - Artificial Neural Networks	158			
	technique for Parameters Estimation of Amorphous Silicon Solar Module				
30	Bakhta Naama, Kaouther Dahmani, Amel Abrouche, Hamid Bouzeboudja - Solving the economic dispatch	164			
	by new hybrid algorithm				
31	Henryk BANACH - Minimization of power losses in a separately excited DC motor	170			
32	Tanakorn Inthasuth, Panaupong Maneechay, Pongsatit Chuayniam, Khankrit Meekaew, Chinda	174			
	Samakee - Integrating Face Detection and Energy Monitoring for Enhanced Energy Suitability in Room				
	Environments				
33	Komkris Boonying, Ekasit Nugoolcharoenlap - Analysis and Design of Superstrate for Gain Enhancement	178			
	of Meta-Surface Antenna				
34	Wittawat POONTHONG, Toshifumi YUJI, Toshio BOUNO, Khanchai TUNLASAKUN, Narong	184			
	MUNGKUNG, Somchai ARUNRUNGRUSMI, Apidat SONGRUK, Noritsugu KAMATA, Shinichi HARAD -				
	Motivational Effecting on Career Education Choice of Electrical Engineering Course for Community College in				
	Thailand by Survey Data Analysis				
35	Vinoth Kumar K, Kowsalya M, In-Ho Ra, Samanvita N, Amarjeet Singh, Venkatesh Kumar P - An	190			
	Analysis of Positive Switching Impulse Voltage and negative streamer growth in point-sphere gap towards				
	Valve Hall				
36	Jerzy GOŁĘBIOWSKI, Marek ZARĘBA - Stationary thermal field in the direct current gas-insulated line	194			
37	Jirapong JITTAKORT, Saichol CHUDJUARJEEN, Charnyut KARNJANAPIBOON, Suwat	198			
	KITCHAROENWAT - Enhanced Half Bridge Series Resonant Inverter for Induction Cap Sealing with Controlled				
	load adaptation				
38	Saheed Lekan GBADAMOSI, Nnamdi I. NWULU - Simulated blockchain-enabled peer-to-peer energy trading	205			
	in marketplace				
39	Amir Nasir, Seyed Vahab AL-Din Makki, Ali Al-Sabbagh - Pandemia Prediction Using Machine Learnin	211			
40	David I. Forsyth, Kanar R. Tariq, and Ahmed Jamal Abdullah Al-Gburi - Fully spectrum-sliced four-wave	219			
	mixing wavelength conversion in a Semiconductor Optical Amplifier				
41	Gulschen KERIMZADE - Calculation of parameters of control induction support	219			
42	Suresh.K, Porkumaran.K, SanjeeviGandhi.A, G.Venkatesan, C.Jeeva - Combined Simulated annealing and	222			
	Improved Binary PSO based Optimal Corona Ring Design for High Voltage Transmission Line				
43	Mariusz STĘPIEŃ, Henryka Danuta STRYCZEWSKA - Perspectives of the development of applications of	230			
	superconductivity in electrical and power engineering - the road map				
44	Nijat Mammadov, Ilkin Marufov, Saadat Shikhaliyeva, Gulnara Aliyeva, Saida Kerimova- Research of	236			
	methods power control of wind turbines				
45	Olga Pilipczuk - Overview of edge computing applications in energy sector	240			
46	M.A.P.Manimekalai, Esther Daniel, T.Mary Neebha, K.Muthulakshmi, . Ryan Paul Jess.C, Raguram.S'-	244			
	Face Recognition Smart Attendance System using Convolutional Neural Networks				
47	Yashar EMAMI', Amangaldi KOOCHAKI, Masoud RADMEHR - Mitigation Sub synchronous Resonance	248			
	and Improvement Low-Voltage Ride-Through Capability of Series Compensated Doubly-Fed Induction				
	Machine Based Wind Farms by Using Bridge-Type Solid-State FCL				
48	Maha Mokrani, Zied Hajaiej - Real time object detection with data variation	254			
49	Bogdan DZIADAK, Piotr GRAFFSTEIN - Capacitive measurement of infusion fluid volume	258			
50	Phuong X. NGUYEN, Linh H. TRAN* - A model for processing and identifying engine vibration signal	2631			
51	Paweł Szetela, Krzysztof Siwek - Evaluating the forecasting capabilities of probabilistic and point-based	267			
	LSTM models in sequence prediction				
52	Michał BUKOWSKI, Albina JEGOROWA, Jarosław KUREK - A Novel Approach using Vision Transformers	273			
	(VIT) for Classification of Holes Drilled in Melamine Faced Chipboard				
53	Daniela Gombarska, Zuzana Psenakova, Milan Smetana, Frantisek Golas*, Simona Boleckova -	277			
	Modelling and simulation of radiofrequency electromagnetic field interaction with a human urogenital system				
54	Marcin JURCZAK, Marcin KOŁODZIEJ, Andrzej MAJKOWSKI - Comparison of Independent Component				
	Analysis, Linear Regression and Adaptive Filtering for Artifact Removal in SSVEP Registration				
55	Maciej JUREWICZ, Bartosz Swiderski, Jarosław KUREK' - Application of Mask R-CNN Algorithm for Apple	286			
	Detection and Semantic Segmentation				
56	Andrzej MAJKOWSKI, Marcin KOŁODZIEJ, Remigiusz Jan RAK - Analysis of Event-Related Potentials for	290			
	Emotion Recognition				
57	Agata PRZYBYS-MAŁACZEK, Karol SZYMANOWSKI, Jarosław KUREK'- Impact of Signal Features on	294			
	Machine Learning-Based Tool Condition Classification in the Milling Chipboard Process				

1. Volodymyr HRABKO¹, 2. Dmytro PROTSENKO¹, 3. Andrii BARTETSKYI², 4. Iryna GUNKO², 5. Ludmila SHVETS², 6. Kateryna CHMYKH², 7. Olena TRUKHANSKA², 8. Vadym RYABOSHAPKA²

Vinnytsia National Technical University (1), Vinnytsia National Agrarian University (2) ORCID: 1. 0000-0002-4666-1758; 2. 0000-0002-5611-7262; 3. 0009-0001-7628-4789; 4. 0000-0002-2441-9469; 5. 0000-0002-4364-0126; 6. 0000-0001-8873-4436; 7. 0000-0001-8481-8878; 8. 0000-0003-1812-1030

doi:10.15199/48.2024.05.28

System diagnostics of braking circuits of frequency-controlled asynchronous electric drives converters using FPGA

Abstract. This article explores the application of FPGA technology in diagnosing braking circuits for frequency-controlled asynchronous electric drive converters. FPGA enables real-time monitoring, rapid fault detection, and system protection, enhancing the reliability and safety of electric drive converters. It optimizes performance, minimizes downtime, and reduces maintenance costs.

Streszczenie. W artykule omówiono zastosowanie technologii FPGA w diagnostyce obwodów hamulcowych sterowanych częstotliwościowo asynchronicznych przekształtników napędu elektrycznego. FPGA umożliwia monitorowanie w czasie rzeczywistym, szybkie wykrywanie usterek i ochronę systemu, zwiększając niezawodność i bezpieczeństwo przekształtników napędu elektrycznego. Optymalizuje wydajność, minimalizuje przestoje i zmniejsza koszty konserwacji. (Diagnostyka systemowa obwodów hamulcowych przekształtników asynchronicznych napędów elektrycznych sterowanych częstotliwością z wykorzystaniem FPGA)

Keywords: system diagnostics, braking circuits, frequency-controlled, asynchronous electric drives, converters, FPGA technology. **Słowa kluczowe:** diagnostyka systemu, obwody hamowania, sterowanie częstotliwością, asynchroniczne napędy elektryczne.

Introduction

In today's automated world, electric drive systems are essential in various industries due to their versatility and energy efficiency. However, they require meticulous maintenance for peak performance and safety, with the braking circuit playing a critical role in controlled deceleration and machinery stoppage.

The introduction of frequency-controlled asynchronous electric drives with converters has increased system complexity, emphasizing the need for robust diagnostics and monitoring. This article explores braking circuit diagnostics in these drives using Field-Programmable Gate Arrays (FPGAs), enabling real-time monitoring and analysis to enhance reliability and safety. Rapid fault detection and system protection reduce downtime and maintenance costs while optimizing performance.

Subsequent sections cover diagnostic principles, methodologies, and practical FPGA implementations, showcasing innovative solutions for improved industrial process efficiency and sustainability.

Analysis of literary sources and problem statement

Increasing the environmental friendliness of energy efficiency and the quality of production involves the use of energy-efficient technologies [1]. In particular, the frequency-controlled asynchronous electric drive has gained extremely wide application in industry due to its high energy characteristics. Inertial mechanisms with frequent braking of the electric drive create the need for additional equipment of the frequency-controlled asynchronous electric drive with a system of energy reset to the braking resistor. They are mainly lifting and transport mechanisms, urban electric transport, electric drives in the field of metallurgy, metalworking [2-3].

As a consequence of the use of frequency-controlled asynchronous electric drives with energy reset to the braking resistor, emerges a need in designing tools for diagnosing of braking frequency-controlled asynchronous electric drives [4]. Since premature or unexpected failure of the brake circuit of a frequency-controlled asynchronous electric drive can lead to production downtime, deterioration of product quality, damage to technological equipment, and can also pose a threat to the life and health of production personnel.

In article [5-6], an FPGA device based on a neurogenetic implementation with a back-propagation neural network is proposed for more efficient and almost instantaneous fault diagnosis. The authors note that thanks to the FPGA, a more energy-efficient and almost instantaneous diagnosis is achieved in comparison to other means, but the authors do not consider the diagnosis of the braking circuits of the frequency converter. In the article a hardware implementation of an FPGA-based fault diagnosis device is proposed, which allows real-time fault detection using information entropy and artificial neural networks as tools for analyzing of the information content of 3-axis vibration signals from a rotary machine during transient processes. But the proposed device does not allow determining the current state of the system in process of its operation, which makes it unsuitable for solving the task of diagnosing brake circuits of frequency converters. In [7-9], a device for diagnosing a frequency converter based on FPGA is proposed. The principle of operation is based on the analysis of the deviation of the line voltage from the standard value. The authors emphasize that the usage of FPGA allows to significantly increase the speed of signal processing by 50%. However, the authors do not consider the diagnosis of the brake circuits.

Purpose and tasks of research

The purpose of the work is to increase the reliability of the frequency-controlled asynchronous electric drive by creating a system for diagnosing its braking circuit based on a mathematical model of signal processing using logic-time functions.

Research results

Programmable logic integrated circuits (FPGAs), or FPGAs (field programmable gate arrays) are digital integrated circuits (ICs) consisting of programmable logic blocks and programmable connections between these blocks. The abilities to configure these devices allow development engineers to solve numerous different problems. Depending on the manufacturing method, FPGAs can be programmed either once or multiple times. Devices that can be programmed only once are called one-time programmable [10-15].

There is a large number of different types of digital integrated circuits, including such as "loose logic" (small components containing a few simple fixed logic functions), memory devices and microprocessors. In this case, interest is generated by programmable logic devices (PLDs), microcircuits specialized custom integrated ASIC (application specific integrated circuit). specialized integrated circuit, ASSP (application specific standard parts) and FPGA. Moreover, the term PLC combines two types of devices: simple programmable logic devices (simple PLCs) and complex programmable logic devices (complex PLCs) [16].

In work [17-18], a mathematical model of the system for diagnosing the brake circuit of the converter of the frequency-controlled asynchronous electric drive using logic-time functions (LCF) is proposed and described the principle by which a table of exemplary states of the brake circuit of the frequency-controlled asynchronous electric drive is formed is described (table 1). In the table of the states of the brake circuit of the brake circuit of the brake circuit of the states of the brake circuit of the converters of the frequency-controlled asynchronous electric drive (table 1), the number "1" corresponds to hitting the parameter into the tolerance zone; "0" – going off the tolerance zone of the corresponding diagnostic sign.

 Table 1. States of the brake circuit of the converter of the frequency-controlled asynchronous electric drive

stan	n Diagnostic signs of the brake circuit					
d up	ΔUC	Uvs0	lg	T°r	T°vs0	
Q0	1	1	1	1	1	
Q1	1	0	1	1	0	
Q2	0	1	0	1	1	
Q3	0	0	1	1	0	
Q4	0	0	0	1	1	

In table 1: Q0 – operational condition; Q1 – operational condition, with overheating of the power module; Q2 – faulty braking resistor; Q3 – critical condition; Q4 is a faulty condition. ΔUC – overvoltage on the filter capacitor; Uvs0 – voltage on the IGBT module; Ig – current through the braking resistor; T°r is the temperature of the braking resistor; T°vs0 is the temperature of the IGBT module.

According to Table 1, exemplary LPFs are formed and as a result of successive addition modulo two of two LPFs (1) from the formed and measured signals, which are diagnostic signs of the current state of the brake circuit, we obtain the resulting LPFs, from which we take as a diagnostic conclusion the LPF which has the smallest segment of existence.

In the general case, the operation of addition modulo two of two LCHFs $f_1(t, t_1, T_1)$ and $f_2(t, t_2, T_2)$ is described by expression (1) [9],

(1)
$$\begin{cases} f_1(t,t_1,T_1) \oplus f_2(t,t_2,T_2) = \\ t - t_m, \ if \ t_m < t \le t_j, \\ t - (t_m + T_m), \ if \ (t_m + T_m) < t \le (t_j + T_j), \\ 0, \ if \ (t \le t_m) \land (t_i < t \le (t_m + T_m)) \land (t > (t_j + T_j)) \end{cases}$$

where t_m =min{t1,t2}, T_m is the duration of the segment of existence corresponding to the time coordinate tm, t_j =max{t1,t2}, T_j is the duration of the segment of existence corresponding to the time coordinate t_j .

For example, a graphic illustration of the addition modulo two of two LCHFs $f_1(t, t_1, t_2, \Delta_i, T_1, T_2)$ and $f_2(t, t_1, t_2, \Delta_i, T_1, T_2)$

 T_2), is presented in fig. 1, and the analytical solution is described by expression (2).

Fig. 1. Graphical illustration of the exclusive disjunction operation of two LCHFs $% \left({{\rm{CHFs}}} \right)$

$$f_1(t, t_1, t_2, \Delta_i, T_1, T_2) \oplus f_2(t, t_1, t_2, \Delta_i, T_1, T_2) = \begin{cases} t - (t_1 + T_1), & \text{if } (t_1 + T_1) < t \le (t_2 + 2\Delta_i), \\ 0, & \text{if } (t < (t_1 + T_1)) \land (t > (t_2 + 2\Delta_i)). \end{cases}$$

(2)

In work [18-20], there was proposed a device for diagnosing brake circuits of converters of frequencycontrolled asynchronous electric drives, which was implemented with digital hardware using standard blocks of discrete devices. Taking into account the requirements of modern instrumentation, energy efficiency, accuracy and speed, we implement this device using programmable logic. As a basis, we will take the Altera MaxII EMP240T100C5 FPGA, which will be programmed in the Quartus II 9.0 environment.

The structural diagram of the device for diagnosing brake circuits of converters of frequency-controlled asynchronous electric drives using FPGA is shown in Fig. 2.

Fig. 2. Structural diagram of the device for diagnosing brake circuits of converters of frequency-controlled asynchronous electric drives using FPGA

In Figure 2: blocks from 1 to 15 are designed to determine whether the measured brake circuit signals belong to the range of permissible values and, accordingly, to convert input analog signals into digital information, FPGA is a programmable integrated logic circuit, BPG is a braking start block, RESET is a reset block of the circuit; GENERATOR – reference frequency generator; BI – display unit; IP – interface converter. As a result of the development of the software, a structural diagram of the device for diagnosing brake circuits of converters of frequency-controlled asynchronous electric drives in the Quartus II environment was obtained, shown in fig. 3.

The main program shown on the structure (see Fig. 3.) consists of six blocks, which represent the main functional parts of the scheme proposed in the second section of the mathematical model for diagnosing brake circuits of converters of frequency-controlled asynchronous electric drives with the use of LFC.

The "Selektor" block is designed to form the LCP of the current state and compare it with the LCP of exemplary states. The implementation of the block is shown in Fig. 4.

Fig. 3. Structural diagram of the device for diagnosing braking circuits of converters of frequency-controlled asynchronous electric drives in the Quartus II environment

Fig. 4. Structural diagram of the Selektor block

The block "Sel_EX_ST" (Fig. 5.) is designed for the generation of sampling signals of the LPF exemplary states from the block "Base" (Fig. 6).

The "Comparator" block (Fig. 8) is designed to determine the segment of existence of the LFCs obtained as a result of the comparison by modulo two and to determine the LFCs with the smallest segment of existence. The "GEN" block (Fig. 7) is designed for the formation of reference frequencies that ensure the correct operation of the device.

Fig. 5. Structural diagram of the "Sel EX ST" block

22

Fig. 6. Structural diagram of the "Base" block

The rest of the elements and blocks used to build the circuit are standard elements of the Quartus II environment library, so their detailed review is irrelevant.

The functionality of the device is proven by the results of its testing, while in real conditions of operation of the frequency converter, which switches to the braking mode. At the same time, additional test disturbances were introduced to study the system response.

Fig. 7. Structural diagram of the "GEN" block (a) and "Comparator" block (b)

Fig. 8. Input and output configuration window of the chip

Conclusions

This implementation allows to significantly increase the speed and the reliability of the device, since only one microcircuit is used, and also allows to reduce power consumption and size compared to the implementation on integrated microcircuits, which, accordingly, significantly reduces its cost.

Authors: HRABKO Volodymyr - Dr. Eng. Sc., Professor, Vinnytsia National Technical University (95 Khmelnytske Shosse str., Vinnytsia, 21000, Ukraine); PROTSENKO Dmytro - PhD of Engineering, Associate Professor, Vinnytsia National Technical University (95 Khmelnytske Shosse str., Vinnytsia, 21000, Ukraine); BARTETSKYI Andrii – PhD of Engineering, Senior lecturer, Vinnytsia National Agrarian University (Sonyachna str., 3, Vinnytsia, 21008, Ukraine); GUNKO Iryna – PhD of Engineering, Associate Professor, Vinnitsa National Agrarian University (Solnechnaya str., 3, Vinnitsa, Ukraine, 21008, e-mail: maniy@ukr.net); SHVETS Ludmila – PhD of Engineering, Associate Professor, Vinnitsa National Agrarian University (Solnechnaya str., З, Vinnitsa,Ukraine, 21008, e-mail: shlv0505@i.ua); CHMYKH Kateryna - PhD Student (Engeneering), Vinnitsa National Agrarian University (Solnechnaya str., 3, Vinnitsa, Ukraine, 21008, e-mail: catherina099@gmail.com);

TRUKHANSKA Olena – PhD of Engineering, Associate Professor, Vinnitsa National Agrarian University (Solnechnaya str., 3, Vinnitsa, Ukraine, 21008, e-mail: seaswallow@ukr.net); RYABOSHAPKA Vadim – PhD of Engineering, Senior lecturer, Vinnitsa National Agrarian University (Solnechnaya str., 3, Vinnitsa, Ukraine, 21008, e-mail: vadymryaboshapka@gmail.com).

REFERENCES

- Posviatenko E., Posviatenko N., Budyak R., Shvets L., Paladiichuk Y., Aksom P., Rybak I., Sabadash B., Hryhoryshen V. Influence of a material and the technological factors on improvement of operating properties of machine parts by reliefs and film coatings. Eastern-European Journal of Enterprise Technologies. 95 (2018). nr. 5/12, 48-56. https://doi.org/10.15587/1729-4061.2018. 142924
- Hraniak V. F., Matviychuk V. A., Kupchuk I. M. Mathematical model and practical implementation of transformer oil humidity sensor. Electronics. 26 (2022). nr. 1, 3-8. https://doi.org/10.53314/ELS2226003H
- Baranovsky V., Truhanska O., Pankiv M., Bandura V. Research of a contact impact of a root crop with a screw auger. Research in Agricultural Engineering. 66 (2020). nr. 1, 33-42. https://www.doi.org/10.17221/75/2017-RAE
- Yaropud V., Honcharuk I., Datsiuk D., Aliiev E. The model for random packaging of small-seeded crops' seeds in the reservoir of selection seeders sowing. Agraarteadus. 33 (2022). nr. 1, 199-208. https://doi.org/10.15159/jas.22.08
- Kotov B., Stepanenko S., Tsurkan O., Hryshchenko V., Pantsyr Yu., Garasymchuk I., Spirin A., Kupchuk I. Fractioning of grain materials in the vertical ring air channel during electric field imposition. Przeglad elektrotechniczny. 99 (2023). nr. 1, 100-104. https://doi.org/10.15199/48.2023.01.19
- Ryndialev V., Kholodiuk O., Khmelovskyi V., Petryshchev A., Yushchenko A., Fesenko G., Chaplyhin Y., Strelnikov V., Andreev A., Matukhno V. Establishing patterns of the structural-phase transformations during the reduction of tungsten-containing ore concentrate with carbon. Eastern-European Journal of Enterprise Technologies.109 (2021). nr. 1, 16-21. https://doi.org/10.15587/1729-4061.2021.225389
- Kupchuk I., Burlaka S., Galushchak A., Yemchyk T., Galushchak D., Prysiazhniuk Y. Research of autonomous generator indicators with the dynamically changing component of a two-fuel mixture. Polityka Energetyczna – Energy Policy Journal. 25 (2022). nr. 2, 147–162. https://doi.org/10.33223/epj/150746.
- Yaropud, V. Analytical study of the automatic ventilation system for the intake of polluted air from the pigsty. Scientific horizons. 24 (2021), nr. 3, 19-27. https://doi.org/10.48077/scihor.24(3).2021.19-27
- Gunko I., Babyn I., Pryshliak V. Experimental studies of the air injector system operating modes of the milk washing system. Scientific Horizons. 88 (2020), nr. 3, 44–53. https://doi.org/10.33249/2663-2144-2020-88-3-44-53
- Kaletnik H., Mazur V., Gunko I., Ryaboshapka V., Bulgakov V., Raide V., Ilves R., Olt J. Study on performance of compression engine operated by biodiesel fuel. Agronomy Research. 18 (2020). S 1, 862–887. https://doi.org/10.15159/AR.20.027
- Hunko I., Tsurkan O., Shargorodskiy S., Shchur T., Beloev H., Kovalyshyn O., Domin M. The influence of wave processes of hydraulic oils on the operation of a hydraulic drive. Agricultural Engineering. 26 (2022). nr. 1, 91-104. https://doi.org/10.2478/agriceng-2022-0008
- Honcharuk I., Kupchuk I., Yaropud V., Kravets R., Burlaka S., Hraniak V., Poberezhets Ju., Rutkevych V. Mathematical modeling and creation of algorithms for analyzing the ranges of the amplitude-frequency response of a vibrating rotary crusher in the software Mathcad. Przegląd Elektrotechniczny. 98 (2022). nr. 9, 14-20. https://doi.org/10.15199/48.2022.09.03
- Tsurkan O., Kupchuk I., Polievoda Yu., Wozniak O., Hontaruk Y., Prysiazhniuk Yu. Digital processing of one-dimensional signals based on the median filtering algorithm. Przeglad Elektrotechniczny. 98 (2022). nr. 11, 51-56. https://doi.org/10.15199/48.2022.11.08
- Kupchuk I., Voznyak O., Burlaka S., Polievoda Y., Vovk V., Telekalo N., Hontaruk Ya. Information transfer with adaptation to the parameters of the communication channel. Przegląd elektrotechniczny. 99 (2023). nr. 3, 194-199. https://doi.org/10.15199/48.2023.03.34

- Bandura V., Bezbah I., Kupchuk I., Fialkovska L. Innovative methods of drying rapeseeds using microwave energy. Polityka Energetyczna – Energy Policy Journal. 26 (2023). nr. 2, 217– 230. https://doi.org/10.33223/epj/163328
- Semenov A. A., Baraban S. V., Semenova O. O., Voznyak O. M., Vydmysh A. A., Yaroshenko L. V Statistical express control of the peak values of the differential-thermal analysis of solid materials. Solid State Phenomena. 291 (2019). 28-41. https://doi.org/ 10.4028/www.scientific.net/SSP.291.28
- Semenov, A., Osadchuk, O., Semenova, O., Voznyak, O., Rudyk, A., Koval, K. Research of dynamic processes in the deterministic chaos oscillator based on the colpitts scheme and optimization of its self-oscillatory system parameters. Lecture Notes on Data Engineering and Communications Technologies. 48 (2021). 181–205 http://dx.doi.org/10.1007/978-3-030-43070-2_10
- Semenov, A.O., Voznyak, O.M., Osadchuk, O.V., Klimek, J., Orazalieva, S. Development of a non-standard system of microwave quadripoles parameters. Proceedings of SPIE - The International Society for Optical Engineering. 2019, 11176, 111765N http://dx.doi.org/10.1117/12.2536704
- Semenov, A., Semenova, O., Rudyk, A., Voznyak, O., Pinaiev, B., Kulias, R. Mathematical Model of Microwave Devices on Resonant Tunneling Diodes for Practical Application in Radar and Electronic Systems. 2020 IEEE Ukrainian Microwave Week, UkrMW 2020 – Proceedings. (2020). 272–277 https://doi.org/10.1109/ UkrMW49653.2020.9252673
- Vasilevskyi O. M., Sevastianov V.M., Ovchynnykov K. V., Didych V. M., Burlaka S. A. Accuracy of potentiometric methods for measuring ion activity in solutions. Proceedings of Seventh International Congress on Information and Communication Technology. 1 (2023), 181-190. https://doi.org/10.1007/978-981-19-1607-6_16